On the Null Asymptotic Stabilization of the Two-dimensional Incompressible Euler Equations in a Simply

نویسندگان

  • CONNECTED DOMAIN
  • JEAN-MICHEL CORON
چکیده

We study the asymptotic stabilization of the origin for the two-dimensional (2-D) Euler equation of incompressible inviscid fluid in a bounded domain. We assume that the controls act on an arbitrarily small nonempty open subset of the boundary. We prove the null global asymptotic stabilizability by means of explicit feedback laws if the domain is connected and simply connected.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilization of the incompressible 2D Euler equations in a simply connected domain utilizing the Lorentz force

In this paper, the null asymptotic stabilization of the 2D Euler equations of incompressible fluids in a simply connected bounded domain is investigated by utilizing the Lorentz force given by the Maxwell equations with Ohm’s law.  2004 Elsevier Inc. All rights reserved.

متن کامل

Three-dimensional Vibration Suppression of an Euler-bernolli Beam via Boundary Control Method

In this paper, the general governing equations of three-dimensional vibrations of an Euler-Bernoulli Beam under influences of system dynamics are derived by the Hamiltonian method. Then two fundamental cases of a cantilever beam and a rotating beam are considered. The conventional methods for vibration suppression debit to expenses and make new problems such as control spillover because they ar...

متن کامل

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

Nonlinear Dynamics of the Rotational Slender Axially Moving String with Simply Supported Conditions

In this research, dynamic analysis of the rotational slender axially moving string is investigated. String assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, resulting in two partial differential equations for the transverse motions. The equations are ch...

متن کامل

Three-dimensional characteristic approach for incompressible thermo-flows and influence of artificial compressibility parameter

In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity equation, Momentum equations in three directions, and energy equation) and then results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999